Mean ergodic type theorems

dc.contributor.authorOğuz, Gencay
dc.contributor.authorOrhan, Cihan
dc.contributor.departmentOthertr_TR
dc.contributor.facultyOthertr_TR
dc.date.accessioned2021-11-09T11:26:30Z
dc.date.available2021-11-09T11:26:30Z
dc.date.issued2019-08-01
dc.description.abstractLet T be a bounded linear operator on a Banach space X . Replacing the Ces\`{a}ro matrix by a regular matrix A = ( a n j ) Cohen studied a mean ergodic theorem. In the present paper we extend his result by taking a sequence of infinite matrices A = ( A ( i ) ) that contains both convergence and almost convergence. This result also yields an A -ergodic decomposition. When T is power bounded we give a characterization for T to be A -ergodic.tr_TR
dc.description.indexTrdizintr_TR
dc.identifier.endpage2271tr_TR
dc.identifier.issn/e-issn2618-6470
dc.identifier.issue2tr_TR
dc.identifier.startpage2264tr_TR
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.562214tr_TR
dc.identifier.urihttp://hdl.handle.net/20.500.12575/75960
dc.identifier.volume68tr_TR
dc.language.isoentr_TR
dc.publisherAnkara Üniversitesi Fen Fakültesitr_TR
dc.relation.isversionof10.31801/cfsuasmas.562214tr_TR
dc.relation.journalCommunications Faculty of Sciences University of Ankara Series A1 Mathematics and Statisticstr_TR
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıtr_TR
dc.subjectInfinite matricestr_TR
dc.subjectAlmost convergencetr_TR
dc.subjectErgodic theoremstr_TR
dc.titleMean ergodic type theoremstr_TR
dc.typeArticletr_TR

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
85.pdf
Size:
282.72 KB
Format:
Adobe Portable Document Format
Description:
Dergi
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: